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ABSTRACT

The paper presents a spatio-color classification in a chrominance-

luminance space related to the dichromatic model. The unsu-
pervised adaptive clustering is performed after the color con-
nectedness degrees (CCD) of a color interval which embeds
jointly 1) colorimetric information; 2) the probability that a
given color is connected (in the image) to a set of similar col-
ors. The chrominance CCDs are analyzed first while the lu-
minance CCDs are studied only when necessary. Eventually,
the method depends mainly on one parameter : the quantiza-
tion step A. The method is evaluated quantitatively in terms
of quality and compactness (number of finals colors) on the
Kodak image database. As an example, this generic technique
is applied to skin detection.

1. INTRODUCTION

Many multimedia interactivity applications require some
specific processings such as color clustering and/or segmen-
tation: skin detection [1], retrieval or indexing, tracking [2].
Starting generally from the color distribution in the histogram,
the clustering consists in determining the & most representa-
tive classes of pixels.

The performances of the classification depend highly on
the choices made 1) on the colorspace 2) on the type of his-
togram. Color histograms have the advantage to be robust
to small changes in viewpoint or appearance. Unfortunately,
since they do not preserve topological (connectedness) or even
any spatial information, they remain usually not informative
or discriminant enough. Several elegant methods incorporate
both spatial and colorimetric information into a same data
representation [3-5]. Finally, the most classical way to im-
prove the color data is to use 2" order statistical features as
in the precursor work of [6]. Particularly, the Color Con-
nectedness Degrees [7] was recently exploited in a segmen-
tation procedure in order to secure a one-to-one relationship
between color clusters and regions [8]. The procedure starts
from a fixed number k of classes and determines the cubic
color intervals in the RGB space with highest compactness
degree and color homogeneity, therefore more likely to span
real regions in the image.

Our clustering procedure relies on the CDD as in [8]. Our
contributions lie both in the color representation and in the

classification strategy:

1) A colorspace is designed to obey the assumptions of the
dichromatic model which separates the chrominance of lam-
bertian objects from their luminance, avoiding the problems
of ill-definition arising in HSV space for example.

2) Chrominance and luminance are classified separately,
which allows simpler data structures and reduced executing
times. The chrominance classification is privileged. The lu-
minance classification is performed in a second stage only
when necessary.

3) The shape of the color clusters is adaptive.

4) The clustering is unsupervised, i.e. the number of classes
k is not assumed to be known a priori.

The paper is organized as follows. Section 2 explains
the prerequisites which this paper relies on, namely the col-
orspace and the definition of the connectedness degree of a
color interval. The novel color classification scheme is the
subject of Section 3. Section 4 asserts the relevance of the
method by showing some results on real images. Finally, Sec-
tion 5 proposes an application to skin detection.

2. PREREQUISITES

Color representation. In the present work which is fo-
cused on the processing of natural images, specular highlights
are assumed to be insignificant. According to the dichromatic
model [9] for lambertian objects, the colors of most natural
images locate roughly along a finite number of straight lines
in the RGB space, i.e along each body reflection vector, going
from the RGB origin to the intrinsic color ¢;!. In the present
work, the correspondence between the RGB coordinates ¢ and
the dichromatic model is made easier as colors are converted
into a spherical frame (p,0,¢), where p expresses the dis-
tance from the RGB origin O = (0,0,0) to the color ¢ (then p
~ intensity). (0,¢) express the chrominance, independantly
from the luminance. Starting from this color representation
called T PR, the procedure uses the Color Connectedness De-
gree (CCD) to deduce adaptively the main color classes.

The color connectedness degree. Let be a trichromatic

image with components ¢ = (¢!, ¢?,¢3) and note ¢; = (¢';, ¢%;, ¢3;

!For non-lambertian objects, specular reflection can also occur, producing
specular vectors going from the body color to the illuminant color.



the color components of a pixel i at location p;. Assume that
the chrominance is conveyed by components (c';, c2,~) and the
luminance is defined by the third one. A chrominance inter-
val of size A2, the origin of which is the color ¢;, is defined
as the color bin I* = [c},c! +AJ[c?,c? +A]. The first order
probability 2 (I*) is the probability that a pixel of color ¢,
belongs to Il?”. It is computed as the sum of all the first order
probabilities P, of the components ¢ € Il?‘.

Now, we define the co-occurrence probability of two col-
ors P..(ec4,¢p) as the sum of all the occurrence probabilities
of ¢, in a 8-connected neighborhood A’ of a color ¢,. Then,
the second order probability P, (I,]“) of the color interval I
is computed as the sum of the co-occurrence probabilities of
all color couples (¢4, ¢p) € I;* Therefore, the connectedness

degree of a color interval Q)(I,}‘) is given as [7]:
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The CCD D(I;*) is maximum when I;* corresponds to one
only connected component in the image. The more regions,
the lower the value of D. Then, contrary to the correlogram or
to the color histogram, a small (but perhaps salient) homoge-
neous region can get a high D value despite a small occuren-
nce probability P.

Let us detail the procedure based on the analysis of the
CCD in the T PR colorspace.

3. CLASSIFICATION METHOD

First of all, the RGB image is converted to T PR, and the satu-
ration image S is computed. Then, an uniform quantization is
performed on the given dynamics 2M (M coding bits, 8 here),
on N levels (intervals of size A = 2M /N). Then, chrominance
and luminance are analyzed separately and the relative results
are merged.

3.1. Chrominance analysis

The chrominance clustering is achieved following four main
stages:

1) Computation of the color and spatial statistics of each
color bin by, of length A (N x N bins): Py (by), P>(by), D(by)
and the coordinates x.(by) and y.(by) of the spatial centroids
D, in the image ¢, of all the pixels with attributed color by

2) Detection of the local maxima w.r.t. D,. A local max-
imum D, is detected at a bin (b,,) when the two following
criteria C; and G, are met:

G =
G =

D(b,,) > D(by) Vb, € N (by) 2)
D(b,,) > Ty 3)
b, is a color bin belonging to the 8-connected neighborhood
of b,, (noted A(b,,)) in the D space. 7 is a threshold 7} =

0.01 x N/ (N x N) designed to avoid insignificant local max-
ima. It is low enough not to be critical. N is the number of

pixels in the image. Additionally, when two local maxima are
considered to be too close to one another (separated by only
one chrominance bin), the lower value is removed.

3) Definition of the colorimetric subsets, i.e the sets of
color bins. From the local maxima, the procedure consists in
growing each color set (i.e. the union of color bins) in order
to exhibit those of highest connectedness degree. Each bin
in the (8,0) space is assigned to one of the classes of which
the seed is a local maximum, according to a criterion jointly
based on: the colorimetric distance in the (8,¢) space; the
centroid localizations in the image; the connectedness degree
modification after assignment. A bin b; is added to the mode
which maximizes a similarity measure involving three differ-
ent informations:

1. its chromaticity distance (euclidean distance) to the lo-
cal maxima b,,: d°(b;,b,,)

2. the spatial distance (euclidean distance) of the centroid
p.(b;) and the centroid of the local maximum p,(b,):
d’ (b iy b m )

3. the connectedness degree of the set of colors included
in the union of the two bins b; and b,,: d?(b;,b,,) =

D(b;Ub)
Finally, the similarity measure is written as:
X _ d;;zax dfnax dD(bi U bm)
S(bisbn) = max(d¢(b;,by,),€) * max(d*(b;,by),€) d2 . @

Note that each distance is normalized to the range [0, 1] in di-
viding it by its maximum value. € denotes the lowest possible
value of the criterion, it is used to avoid O at denominator.

4) Filtering of the chrominance classes, in order to elimi-
nate classification defects. In a few words, a bin is re-affected
when most of its neighbor pixels have a different class.

As an example, Fig.1(a) shows an example of an image
to be processed”. Then, Fig.1 displays respectively: (b) the
associate space of the CCD values (N x N structure); (c) the
local maxima; (d) the color subsets. Finally, once each pixel
has been assigned a chrominance subset, the chrominance
clustering leads to the result of Fig.1(e).

3.2. Luminance (or p) analysis

The assumption is made, as in [10], that luminance infor-
mation is useful only when colors are not saturated enough.
Therefore when the mean saturation of a chrominance subset
ranges below a given threshold, the class is declared unsat-
urated and may be divided. Our threshold is set to 20% as
in [11] so that unsaturated and low saturated color subsets
may be divided. Then, such a candidate color subset is sub-
divided only when its population is scattered enough in the

2Berkeley database: http://www.eecs.berkeley.edu/Research/Projects/CS
/vision/grouping/segbench/



histogram. To that purpose, the energy is chosen as a scat-
tering criterion, it is maximum for a perfectly homogeneous
region. Therefore, when the energy E(p) on the unsaturated
color set is under a given threshold (0.8), then it is subdivided
into gray subsets (i.e. p classes) following the same steps as
above except for: 1) the procedure is simpler since the data
is monodimensional; 2) only pixels defined as low saturated
(S < 20%) are processed.

Fig.1(f) shows the final chrominance/luminance cluster-
ing with N = 64. Note that not all the color subsets have been
subdivided, namely the saturated color sets (S > 20%) and/or
the homogeneous color sets (with high energy).

For improved results, a Markov classification’ can be pre-
ferred to the Nearest Cluster Classification. The result is
shown on Fig.1(g).

4. QUALITATIVE ANALYSIS

The first experiments are based on the 24 images from
the Kodak dataset  which is a representative and varied set
of color images, composed of natural outdoor scenes, peo-
ple, manufactured object, buildings. We propose to formu-
late the goodness of the classification as a trade-off between a
large reduction of colors and regions in the image (compact-
ness) with a satisfactory preservation of the original informa-
tion (objective and subjective quality for example). Starting
from that assertion, the four following comparison criteria are
used: the PSNR (Peak Signal to Noise Ratio) computed be-
tween the RGB final classification result and the original im-
age’; the CIET76 distance computed in the perceptually uni-
form colorspace CIELAB; the number of classes N, and re-
gions (8-connectedness) N,. At first, the colorspace is T PR,
the number of bins is N = 64, the colors are affected to the
classes according to (4) (criterion noted D+ C+ S, for Degree,
Colorimetric and Spatial distance). The table 1 collects the
results of each experiment (value of the mean criterion com-
puted on the Kodak dataset) for 3 different studies (noted A,
B, C) aiming at evaluating the quality and compactness of the
proposed method. These results provide information about:
(A) the impact of N (quantization). Finally, N = 64 (1*" en-
try, table 1) of is a fair parameter, which provides a satisfying
trade-off between quality and compactness. In addition, using
a larger N means wasting much more memory and time.

(B) the impact of the colorspace. The proposed clustering
technique can be used with any other chrominance/luminance
colorspace. Note that not all colorspaces can reveal the color
clusters so easily as the T PR colorspace. For comparison pur-
poses, the classical HSV and the Otha independent compo-
nents 1 L1 are tested. With HSV, the number of classes is
very high for a lower PSNR and higher CIE76 (compared to

3This stage is not explained here for concision purposes, since it is not the
core of the paper.

“http://rOk.us/graphics/kodak/

SNote that the PSNR values are low due to the huge reduction of the num-
ber of colors.

Table 1: Results of the evaluation criteria. (A) Impact of N: cri-
terion C+ S+ D, TPR colorspace. (B) Impact of the colorspace,
criterion C+ S+ D, N = 64. (C) Impact of the similarity criterion,
T PR colorspace, N = 64.

[PSNRCIET6 [ N. [ N, ]
(A) N=64] 20,19 || 1048 [ 22,38 ]| 3550,08 ||

(A) N=232| 18,02 || 1431 || 583 | 801,17
(A) N=96 || 20,68 | 943 | 51,79 || 7789,58
(B) HSV | 1959 || 10,47 | 92,83 || 1375421
(B) Lkl || 18,69 || 13,67 || 16,13 | 2423,13

(©)  C+S ][ 1894 ] 12,74 | 17,88 [ 2689,54 |

1% entry). This colorspace is known to be sensitive to noise
(ill-definition of hue at low saturation). Obviously, the use
of 111,15 leads to under-segmentation (low number of classes
and regions but large reduction of PSNR). Finally, the quality
is better with 7 PR and for a reasonable number of classes.
(C) the impact of the similarity criterion. We compare the use
of the criterion D+ C + S for the clusters creation (1* entry
and eq.(4) ) with the use of the mixture of color and spatial
constraints (C + S). The mean PSNR for the criterion C + S,
i.e without use of the CCD, is not significantly lower in av-
erage, however the number of classes is significantly higher.
Indeed, the CCD contributes to enlarge color subsets. It fa-
vors relevant and large color subsets, naturally isolating the
irrelevant color subsets related to sparse pixels in the image.

5. APPLICATION TO SKIN DETECTION

The detection uses the proposed classification in conjunction
with the contribution of [1] which proposes simple way to
select skin colors in an image, by multi-thresholding in the
RGB colorspace. For each color cluster extracted previously,
the number of skin pixels ng;, is counted. When the ratio R
of ngi, on the number of pixels in the cluster is high enough
(R > 0.5), the corresponding cluster is considered as a poten-
tial skin cluster. The relative pixels are then segmented into
regions [12]. The selection of skin regions is then based on a
simple size criterion. The regions the size of which is lower
than 5% of the maximum size (size of the largest resulting
region) are removed. Indeed, it is assumed that people occur-
ring in the same scene appear with a comparable scale in the
image.

6. CONCLUSION

A novel adaptive color classification procedure was de-
signed upon the connectedness degree of color subsets. The
color representation stems from the dichromatic model, in or-
der to better stress a priori the different body colors in the
image. The analysis is completed separately on chrominance
and then on luminance when necessary. The most sensitive
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Fig. 1: (a) Initial image, (b) its D space. (c) Detection of local maxima. (d) Color subsets. (¢) Chrominance clustering in (8, ¢). (f) Final
clustering. (g) Markov clustering. The parameters are N = 64,association criterion D+ C + S, TPR colorspace.
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Fig. 2: Examples of skin detection with N = 64 in T PR, with use of CCD. Berkeley database.

parameter of this procedure turns out to be the quantization
step A. However A = 4 leads to satisfactory results for most
images. The method has been successfully applied to skin de-
tection, but it is generic enough to be used for other problem-
atics adressed by interactivity and multimedia applications.
Now, the method has to be accelerated (SIMD, OpenMP) in
order to enable a real-time execution (25 fps) for interactivity
purposes.
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