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ABSTRACT

This paper proposes a novel definition of color lines and sets,
based on the dichromatic model for lambertian objects. The
ends of the body vectors are robustly detected, from the clear-
est to the darkest through to a multi-level 2D histogram anal-
ysis. Finally, instead of classically defining the topographic
map along one sole luminance direction, our body lines are
designed along each body vector. Compared to existing topo-
graphic maps, our method is more compact while better pre-
serving the color quality. Furthermore, it is faster to compute
than [1].

Index Terms— Image color analysis, color, image seg-
mentation, feature extraction, morphological operations.

1. INTRODUCTION
Most image processing techniques require to reduce, before-
hand, the amount of data to be processed. However, the pur-
pose can be quite different from one application domain to
another. For data compression purposes, the reduction has to
be hardly perceived by the human visual system. In computer
vision domain however, images usually need to be reduced to
an optimal set of primitives, which have to be both salient and
robust to the scene geometry changes, in order to be correctly
matched, tracked, interpreted, etc.

Level sets [2] are reputed to convey the most relevant in-
formation of an image. Their boundaries, called level lines,
are more stable than edges under uniform contrast changes,
since they are based on relative intensities. Consequently,
they have been exploited for various issues: extraction of
meaningful boundaries [3], segmentation [4], robust image
registration or matching [5].

Considering the qualities of these primitives, we are in-
terested in studying their extension to color, expecting obvi-
ous benefits in robustness and separability. Our present work
proposes a novel version of the topographic map [1], more
compact and less time-consuming while better preserving the
quality and the information of the image.

The continuation of the paper is structured as follows.
Section 2 recalls the principles of the existing level sets and
lines. Then, Section 3 details our body color lines. To con-
clude, Section 4 asserts the relevance of the proposed method
by comparing it with existing techniques.

2. EXISTING LEVEL SETS AND LINES
Let I(p) be the image intensity at pixel p. I can be decom-
posed into upper level sets N u or lower level sets N l[2]:

N u(E) = {p, I(p) ≥ E}; N l(E) = {p, I(p) ≤ E} (1)

E refers to the considered level: E ∈ [0...2nb−1], for an image
coded on nb digits. The level lines are defined as the bound-
aries of the level sets. They form a set of Jordan curves which
provides a comprehensive description of the image also called
the topographic map. Because of the inclusion properties of
level sets, level lines do never overlay or cross.

While the gray scale is totally and well ordered, it is
obviously more difficult to sort the components of the 3D
color space, while trying to preserve the gray lines properties,
namely completeness, inclusion and contrast invariance.

In [6] and [7], the authors design the lines in the HSV
space, less correlated than RGB and better fitting the human
perception. In [6] in particular, colors are totally ordered in
a lexicographic fashion by favoring intensity first, then hue
and saturation, in order to imitate the perception rules of the
human visual system. Unfortunately, they do not take into
account the specificities of the HSV space, i.e the fact that
hue is ill-defined for low saturation.

Defining color sets directly in the RGB space is one so-
lution to answer this problem of noise sensitivity, as in [1].
These results are quite satisfying regarding compactness and
quality but the technique is time and resources consuming
(several labeling stages, in both image and color space),
which is dissuasive for real-time computer vision applica-
tions. As [1], our topographic map relies on the dichromatic
model.

3. BODY COLOR SETS AND LINES
3.1. Principles

The Shafer dichromatic model [8] states that any inhomoge-
neous dielectric material, uniformly colored and dull, reflects
light by specular reflection and body reflection. Owing to that
model, the colors of a material are distributed in the RGB
space according to the coordinates of the illuminant color cs,
and the body color cb in a L-shape cluster [9]. For lambertian
objects however, there is no specular reflection. The colors re-
sult directly from the penetration of the light beams into the
material, and from its scattering by the pigments. According



Fig. 1. Examples of a color image PARROTS with its color distribution in
the RGB space (ColorSpace Software, available on http://www.couleur.org).
The body vectors are perfectly visible.

to the dichromatic model, they are roughly located along a fi-
nite number of straight lines in the RGB space, i.e along each
body vector going from the black to cb. Similarly, for faintly
saturated images, colors are distributed along the luminance
direction. As an example, Fig.1 shows a example of Kodak
image PARROTS with the representation of its colors in the
RGB space.

While gray level sets are extracted along the luminance
axis of the RGB space, our color sets have to be designed
along each body reflection vector revealed by the image. In
a few words, the existing approach [1] first scans the RGB
space from the black to the white in order to extract the proper
gray sets with their connected components. The chromatic
segmentation (definition of the body colors) is achieved in a
second stage, locally on each gray set. Here, we detect the
body colors once and for all in order to design the sets and
lines along the color vectors. It can be summed up in the four
following stages :
1) color conversion in a spherical frame (ρ, θ, φ), as illustrated
by Fig.2(a), in order to facilitate the emergence of the body
colors. For achromatic colors (on the luminance axis), ρ is
directly equivalent to the intensity. For chromatic colors, it
is related to the location of c on its corresponding body color
vector. For a given ρ, (θ, φ) are the coordinates of the color
located on the spherical surface of distance ρ to the origin;
2) extraction of the body colors and body vectors. That is the
critical stage of the algorithm, described in Section 3.2;
3) classification of the colors to the nearest body vector;
4) design of the level sets and lines along each body vector.

It has been shown in [1] that dichromatic lines were robust
to angular and spherical color changes.

3.2. Computation of the body colors

In the spherical frame (ρ, θ, φ), the bidimensional histogram
H(θ, φ) refers to the distribution of the colors independently
from their value ρ. Logically, a large density of colors in that
histogram is likely to reveal a body vector. As an example,
Fig.2(b) shows the histogram of the image PARROTS, where
the extrema of the four main body vectors appear. Therefore,
these colors could be determined by detecting the local max-
ima in H(θ, φ). However, because of noise and because of
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Fig. 2. (a) Spherical representation of the body vector in the RGB cube. (b)
Example of histogram HE(θ, φ) of the image PARROTS.

the lambertian approximation, a more appropriate and robust
approach has to be designed.

The body colors, i.e. the upper (clearer) ends of the body
vectors, are extracted in a top-down approach with decreasing
values of ρ. In other words, the clear colors are extracted
before the dark ones. Let be HE(θ, φ) the 2D histogram of
the color components (θ, φ) of distance ρ ≥ E from the black.
First, the local maxima are detected in HE(θ, φ), beginning
with the highest value of E . Since detecting 2D local maxima
could be too restrictive and yield a low number of maxima,
we consider the union of the one-dimensional local maxima
defined on θ and φ separately. They form several connected
components, called color signatures with labels nE . Each nE
is considered as a potential body color of level E . In a second
stage, HE−1(θ, φ), i.e. the histogram at lower level (or lower
iso-distance to the black), is analyzed similarly, providing a
set of labels nE−1.

From one histogram HE(θ, φ) to the other HE−1(θ, φ),
the relationship between labels can be described through
the two-dimensional Transition table T (nE , nE−1). As il-
lustrated on Fig. 3, it is defined in the following way.
T (nE , nE−1) = 1 when at least one bin HE(θ, φ) of label
nE gets a new label nE−1 in the histogram HE−1(θ, φ). In-
versely, T (nE , nE−1) = 0 when none of the labels nE gets
the label nE−1.

Through this table, four phenomena can be detected.
1. Occurrence of a new body color. A new color of la-
bel nE−1 is detected when T (0, nE−1) = 1 and ∀nE 6= 0,
T (nE , nE−1) = 0. That is illustrated in Fig. 3 by the occur-
rence of the label f , which is consequently considered as a
body color.
2. Evolving (i.e expansion, reduction or constancy of a sig-
nature). There is an evolving of the signature nE−1 if there is
one and only one label nE 6= 0 for which T (nE , nE−1) = 1.
For example, labels b and g correspond finally to the same
body vector the end of which has been labeled with value b,
and g finally inherits the label b.
3. Fusion. This phenomenon can occur often since the seg-
ments become more and more difficult to distinguish when
they are close to the origin. Considering one label nE−1,
a fusion is detected when there are several nE for which
T (nE , nE−1) = 1. That is the case of labels c and d which



nE−1 0 f g h i j
nE

0 1 1 1 1 0 0
a 1 0 0 0 0 0
b 0 0 1 0 0 0
c 0 0 0 1 0 0
d 0 0 0 1 0 0
e 1 0 0 0 1 1

Fig. 3. The Transition Table. (a) Histograms at two successive levels
HE(θ, φ) and HE−1(θ, φ), with their color signatures labeled from a to
j. (b) Their related transition table, the row entries are the colors signatures
nE while the column entries correspond to the labels nE−1.

are finally fused in one label h. In that case, the colors c and
d are considered to be two different body colors, while h is
not taken into account.
4. Division. It is a rare phenomenon, which is due to noise,
artifacts, and to the limitations of the lambertian assumption.
Considering one signature of label nE , a division is detected
when, for several nE−1, we have T (nE , nE−1) = 1. For
example, the signature e is replaced by two labels h and i,
which will be considered as two different body colors.

Thus, each histogram HE(θ, φ) is processed in the same
way, leading finally to the set of the main body colors con-
veyed by the image.

Once all the levels E have been analyzed, one body color
cb

i for i = 1..Nc has to be associated to each of theNc distin-
guished labels. For each color signature, the final body color
is chosen as the couple (θ, φ) for which H(θ, φ) is maximum
in the connected component.

3.3. Body sets and lines

Once the body colors and vectors have been determined, each
pixel p is projected onto the nearest vector. Then, each vec-
tor is divided into upper or lower level sets of ρ. Thus, our
approach computes the body color in a more global fashion
than as in [1], providing a larger reduction of the number of
colors. Here, we require the analysis on one histogram per
level instead of one histogram per connected component of
the image [1].

4. EXPERIMENTS
Our topographic map is compared to the existing techniques
[6, 1]. We call A, B the methods proposed by [6] and [1]
respectively, and C refers to the proposed technique. Two
quantization levels Nl (8 and 16) are tested 1.

1In order to have the same accuracy than method A and B, we have to
consider histograms of size 2Nl × 2Nl if local maxima are computed in a 3
× 3 neighborhood.

We define the best collection of level sets as the one which
reconstruct the image at best with the lowest number of level
sets Nsets and within a reasonable executing times. The dis-
similarity between the reconstructed image – i.e. the collec-
tion of color sets– with the original image is evaluated by 2
criteria: the PSNR and the psycho-visual distance CIELAB
distance DCIE76 (see [10] for instance) with illuminant d65.

Fig. 4 shows the level sets and lines from image PAR-
ROTS with Nl = 8. The method A has produced some false
colors, on the yellow feathers and on the leaves for example.
B produces less artifacts, but the colors are visually different
from the input image (see Fig.1). Finally, our sets seems more
faithful to the original, in terms of colors. Let us focus on the
color lines, especially in the two boxes. A obviously produces
a larger number of lines, globally more tortuous than B and C.
The latter produces less lines, which are visually smoother.
These results are confirmed by the comparison criteria col-
lected in table 1. Indeed, C provides a lower number of sets
and shows the best quality results, i.e. the lowest DCIE76

distance and the highest PSNR.

Table 1. Qualitative results computed on the PARROTS image.
Nl = 8 Nl = 16

Nsets DCIE76 PSNR Nsets DCIE76 PSNR
A 3406 26,66 14,78 9242 12,52 17,55
B 332 17,0 15,33 1102 8,34 18,90
C 103 14,63 15,64 944 7,99 19,32

Then, the three methods have been compared on 22 im-
ages from the Kodak data base2, of size 384 x 256 and 98
images from the Middlebury Stereo Datasets3 of size 638 x
555 approximately. Table 2(a) and 2(b) collect the compari-
son criteria, µ and σ being the average and standard-deviation
computed on the whole database. Here also, whatever the
quantization level, C exhibits a smaller number of sets and
better preserves the color information.

The HSV space leads to a large number of sets, partly
due to the production of noisy and irrelevant sets at low sat-
uration, when hue is ill-defined. Besides, the definition of
the color sets along the dominant color vectors of the RGB
space have been simplified compared to the existing dichro-
matic lines [1]. Since the computation of the body colors is
now more global while being robust thanks to an appropriate
scan in the color space, it is less sensitive to local noise.

Executing times. On Kodak images the sizes of which re-
duced by a factor of two (192 × 128), the computation times
are in average 6,5s per image [1]. This result has been pro-
duced without any specific optimization and using a processor
Intel Pentium III Xeon 2266 MHz, 3Go Ram. With the same
computer, the proposed technique takes between 0,3s and 1s
for an image of size 695 x 555 (depending on the number of

2http://r0k.us/graphics/kodak/
3The data sets come from http://vision.middlebury.edu/stereo/data/, in

scenes2006, scenes2005 and scenes2003, images disp1.png and disp5.png
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Fig. 4. Color sets (first row) and lines (second row) obtained on the image SYNTHETIC for 8 levels.

Table 2. Quantitative results computed on 120 images for: (a)
8 levels and (b) 16 levels. (µ: average, σ: standard-deviation).

Nsets DCIE76 PSNR
µ σ µ σ µ σ

A 5432,7 3706,2 31,07 13,80 17,55 4,33
B 531,2 231,7 33,34 4,20 18,98 4,73
C 261,4 276,0 15,10 3,18 20,69 5,09

(a)
Nsets DCIE76 PSNR
µ σ µ σ µ σ

A 18165,9 13584,6 14,57 5,70 21,14 4,47
B 8364,9 6254,9 15,12 2,56 22,12 4,67
C 596,9 349,2 7,43 1,24 25,51 5,02

(b)

colors Nb). Unfortunately, our approach is more time con-
suming than the total order in HSV, which does not requires
any histogram analysis. That is the price to pay to get a more
compact representation of the image.

5. CONCLUSION

We have proposed a novel color topographic map based on
the lambertian assumption of the dichromatic model. The
main body colors are automatically determined and the level
sets and lines are extracted along the body vectors. Thus,
colors are partially ordered in the RGB space. The com-
putation of the body colors has been achieved via the anal-
ysis of the multi-level 2D histograms and the introduction
of the Transition Table. The experiments have shown that
this method yields a good trade-off between compactness and

quality, within reasonable computation times. It overcomes
the main defect of HSV representations, the ill-definition of
hue for low saturation, which produces irrelevant sets. The
data reduction towards a few robust features is likely to re-
duce the complexity of the downstream algorithms, matching
or tracking for instance. That is our present challenge. The
proposed method can also be useful for compression purposes
or color reduction.
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